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Abstract—Personalized Federated Learning (PFL) is a new
Federated Learning (FL) approach to address the heterogeneity
issue of the datasets generated by distributed user equipments
(UEs). However, most existing PFL implementations rely on
synchronous training to ensure good convergence performances,
which may lead to a serious straggler problem, where the training
time is heavily prolonged by the slowest UE. To address this
issue, we propose a semi-synchronous PFL algorithm, termed as
Semi-Synchronous Personalized FederatedAveraging (PerFedS2),
over mobile edge networks. By jointly optimizing the wireless
bandwidth allocation and UE scheduling policy, it not only miti-
gates the straggler problem but also provides convergent training
loss guarantees. We derive an upper bound of the convergence
rate of PerFedS2 in terms of the number of participants per
global round and the number of rounds. On this basis, the
bandwidth allocation problem can be solved using analytical
solutions and the UE scheduling policy can be obtained by a
greedy algorithm. Experimental results verify the effectiveness
of PerFedS2 in saving the training time as well as guaranteeing
the convergence of training loss, in contrast to synchronous and
asynchronous PFL algorithms.

Index Terms—Semi-synchronous implementation, personalized
federated learning, mobile edge networks

I. INTRODUCTION

FEDERATED Learning (FL) is a new distributed machine
learning paradigm that enables model training across

multiple user equipments (UEs) without uploading their raw
data to a central parameter server [1]. Since its advent, FL
has been widely adopted as a powerful tool to exploit the
wealth of data available at the end-user devices [2, 3] and
foster new applications such as Artificial Intelligence (AI)
medical diagnosis [4] and autonomous vehicles [5]. Training a
FL model contains three typical steps: (i) a set of UEs conduct
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local computing based on their own dataset, and upload the
resultant parameters to the server, (ii) the server aggregates the
UEs’ parameters and improve the global model, and (iii) the
server feeds back the new model to UEs for another round of
local computing. This procedure repeats until the loss function
starts to converge and a certain model accuracy is achieved.

With the substantial improvement in sensing capabilities
and computational power of edge devices, UEs are producing
abundant but diverse data [6]. The increasingly diverse datasets
breed a demand for customized services on individual UEs.
Typical examples of potential applications include Vehicle-
to-everything (V2X) communications, where vehicles in the
network may experience various road conditions and driv-
ing habits, making the local model disparate to the global
model [7, 8]; and recommendation systems, where local
servers have potentially heterogeneous customers and share
non-independent and identically distributed (non-i.i.d.) item
popularities, and thus requiring fine-grained recommenda-
tions [9, 10]. However, conventional FL algorithms are pro-
posed to learn a common model which may have mediocre
performance on certain UEs. And the situation is exacerbating
as the ever-developing mobile UEs are generating increasingly
diverse data. To address this issue, Personalized Federated
Learning (PFL) [11, 12] has been proposed. Specifically, PFL
provides an initial model that is good enough for the UEs to
start with. Using this initial model, each UE can fastly adapt to
its local dataset with one or more gradient descent steps using
only a few data points. As a result, the UEs (especially with
heterogeneous datasets) are able to enjoy fast personalized
models by adapting the global model to local datasets.

Nonetheless, most PFL implementations adopt synchronous
training to ensure good convergence performance [11, 13–
16]. In the synchronous setting, the central server has to wait
until the arrival of the parameters of the slowest UE before it
can update the global model. As a consequence, synchronous
training may cause severe straggler problem in PFL, where
the deceleration of any UE can delay all other UEs. On the
other hand, parameters of the UEs may arrive at the server at
different speeds due to reasons such as various CPU processing
capabilities and different wireless channel conditions. This
difference begets another operation mechanism: asynchronous
training. The key idea of asynchronous implementation is to
allow all UEs work independently and the server updates
the global model every time it receives an update from any
UE [17–19]. Although this model updating strategy avoids
the waiting time of UEs, the gradient staleness caused by
asynchronous updating will further degrade the performance of
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the model training. At this point, a semi-synchronous PFL has
been a natural choice to balance the disadvantages caused by
the synchronous as well as the asynchronous PFL algorithms.

Although there have been several works on semi-
synchronous FL algorithms [20–23], the semi-synchronous
PFL problem is not well understood. [20] studied the semi-
asynchronous protocol for fast FL. [21] proposed a semi-
asynchronous FL algorithm in heterogeneous edge computing.
[22] introduced a novel energy-efficient semi-asynchronous FL
protocol that mixes local models periodically with minimal
idle time and fast convergence. At last, [23] proposed a
clustered semi-asynchronous FL algorithm that groups UEs
by the delay and direction of clients’ model update to make
the most of the advantage of both synchronous and asyn-
chronous FL. Designing a semi-synchronous PFL in mobile
edge networks, however, is particularly challenging due to
the following reasons: (1) The convergence rate of a semi-
synchronous PFL is unclear. Moreover, the loss function of
a deep learning model is usually non-convex, and whether
a semi-synchronous PFL can converge and under what con-
ditions can the algorithm converge is of much interest. (2)
The practical wireless communication environments need to
be considered. It is non-trivial to decide the UE scheduling
policy of a semi-synchronous PFL algorithm while considering
the wireless bandwidth allocation.

In this paper, we propose a semi-synchronous PFL algo-
rithm over mobile edge networks, named Semi-Synchronous
Personalized FederatedAveraging (PerFedS2) that mitigates
the straggler problem in PFL. This is done by optimizing a
joint bandwidth allocation and UE scheduling problem. To
solve this problem, we first analyse the convergence rate
of PerFedS2 with non-convex loss functions. Our analysis
characterizes the upper bound of the convergence rate in terms
of two decision variables: the number of scheduled UEs in
each communication round, and the number of communication
rounds. Based on this upper bound, the joint bandwidth
allocation and UE scheduling optimization problem can be
solved separately. For the bandwidth allocation problem, we
find that for a given UE scheduling policy, there exists
infinitely many bandwidth solutions to minimize the overall
training time. For the UE scheduling problem, facilitated by
the results obtained from the convergence analysis, the optimal
number of UEs that are scheduled to update the global model
in each communication round and the optimal number of
communication rounds can be estimated. These results lead us
to designing a greedy algorithm that gives the UE scheduling
policy. Finally, with the optimal bandwidth allocation and the
UE scheduling policy, we are able to implement PerFedS2 over
mobile edge networks.

To summarize, in this paper we make the following contri-
butions:

• We propose a new semi-synchronous PFL algorithm, i.e.,
the PerFedS2, over mobile edge networks. The PerFedS2

strikes a good balance between synchronous and asyn-
chronous PFL algorithms. Particularly, by solving a joint
bandwidth allocation and UE scheduling problem, it
not only mitigates the straggler problem caused by the

synchronous training but also abbreviates potential diver-
gence issue in asynchronous training.

• We derive the convergence rate of the PerFedS2. Our
analysis characterizes the upper bound of convergence
rate as a function with respect to the number of UEs
that are scheduled to update the global model in each
communication round and the number of communication
rounds.

• We solve the optimization problem by decoupling it
into two sub-problems: bandwidth allocation problem and
UE scheduling problem. While the optimal bandwidth
is proved to minimize the overall training time within a
range of values, the UE scheduling policy can also be
determined using a greedy online algorithm.

• We conduct extensive experiments by using MNIST,
CIFAR-100 and Shakespeare datasets to demonstrate the
effectiveness of PerFedS2 in saving the overall training
time as well as providing a convergent training loss,
compared with four baselines, namely, the synchronous
and asynchronous, FL and PFL algorithms, respectively.

The rest of the paper has been organized as follows. In
Section II we introduce the basic learning process of PerFedS2.
Then in Section III we formulate a joint bandwidth allocation
and UE scheduling problem to quantify and maximize the
benefits PerFedS2 could bring compared with synchronous
and asynchronous training. In order to solve the optimization
problem, we first analyse the convergence rate of PerFedS2 in
Section IV. Then, we solve the joint optimization problem in
Section V. At last, we evaluate the performance of PerFedS2

in Section VI.

II. SEMI-SYNCHRONOUS PERSONALIZED FEDERATED
LEARNING MECHANISM

In this section, we propose PerFedS2 to mitigate the draw-
backs of synchronous and asynchronous PFL algorithms. For a
better understanding of the proposed algorithm, we commence
with reviewing FL and PFL in Section II-A and Section II-B,
respectively. Then, we formally introduce PerFedS2 in Sec-
tion II-C.

A. Review: Federated Learning

Consider a set of n UEs connected to the server via a BS,
where each UE has a local data (x, y) ∈ Xi×Yi. If we define
fi : Rm → R as the loss function corresponding to UE i, and
w as the model parameter that the server needs to learn, then
the goal of the server is to solve

min
w∈Rm

f(w) :=
1

n

n∑
i=1

fi(w), (1)

where fi represents the expected loss over the data distribution
of UE i, which is formalized as follows,

fi(w) := E(x,y)∼Hi [li(w;x, y)], (2)

where li(w;x, y) measure the error of model w in predicting
the true label y, and Hi is the distribution over Xi × Yi.

Because the dataset resided on different UEs are usually
non-i.i.d. and unbalanced, while the global model trained by

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3210434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:35:35 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

FedAvg concentrates on the average performance of all the
UEs. The resultant model may perform very poor on certain
individual UEs. In response, PFL is proposed to capture the
statistical heterogeneity among UEs by adapting the global
model to local datasets. We review this scheme in the next
subsection.

B. Review: Personalized Federated Learning

In contrast to the standard FL, PFL approaches the solu-
tion of (1) via the Model-Agnostic Meta-Learning (MAML).
Specifically, the target of PFL is to learn an initial model that
adapts quickly to each UE through one or more gradient steps
with only a few data points on the UEs. Such an initial model
is commonly known as the meta model, and the local model
after adaptation is referred to as the fine-tuned model.

Formally, if each UE intakes the initial model and updates
it via one step of gradient using its own loss function, problem
(1) can be written as

min
w∈Rm

F (w) :=
1

n

n∑
i=1

fi(w − α∇fi(w)), (3)

where α ≥ 0 is the learning rate at individual UEs. Note that
we use the same learning rate for all UEs in this paper for
simplification. This assumption can be easily extended to the
general case when UEs have diverse learning rate αi as long
as αi ≥ 0. For each UE i, its optimization objective Fi can
be computed as

Fi(w) := fi(w − α∇fi(w)). (4)

Unlike conventional FL, after receiving the current global
model, a UE in PFL first adapts the global model to its local
data with one step of gradient descent, and then computes
local gradients with respect to the model after the adaptation.
This step of local adaptation captures the difference between
UEs, and the model learned with this new formulation (3) is
proved to be a good initial point for any UE to start with for
fast adaptation [24, 25].

Many existing works on PFL is limited to the context of
synchronous learning, where the faster UEs have to wait until
all the others arrive the server to move to the next communi-
cation round [11, 13–16]. As a result, the synchronous PFL
often suffers from the straggler problem due to the prolonged
waiting time for the slowest UE. On the other hand, the PFL
can also be trained in an asynchronous manner, where the
server performs global updating as soon as it receives a local
model from any UE. In this scenario, some slower UEs will
bring stale gradient updates to the server, thereby degrading
the convergence performance of the model training. Therefore,
in this paper, we propose a semi-synchronous PFL mechanism
that seeks a trade-off between synchronous and asynchronous
PFL algorithms, which is detailed in the following subsection.

C. Semi-Synchronous Personalized Federated Learning

We propose a semi-synchronous PFL mechanism, which
is a trade-off between synchronous and asynchronous PFL.
We term this semi-synchronous PFL algorithm as Semi-
Synchronous Personalized FederatedAveraging (PerFedS2).

Algorithm 1: Semi-Synchronous Personalized Feder-
ated Averaging (PerFedS2)

1 for k = 0, 1, . . . ,K − 1 do
2 Processing at Each UE i
3 if Receive wk from the server then
4 Compute local gradient ∇̃Fi(wk) by Eq. (7)

Upload ∇̃Fi(wk) to the server
5 end
6 Processing at the Parameter Server
7 Ak = ∅
8 while |Ak| < A do
9 Receive local gradient ∇̃Fi(wk) from UE i

10 Ak = Ak ∪ {i}
11 end
12 Update global model to wk+1 by Eq. (8)
13 for i ∈ U do
14 if i ∈ Ak or τ ik > S then
15 Distribute wk+1 to UE i
16 end
17 end
18 end

PerFedS2 is formally described in Alg. 1. At the UE side (Line
2-5), upon receiving a global model, or equivalently, the meta
model wk, the UE adapts wk to its local dataset to obtain the
gradient of local functions, which in this case, the gradient
∇Fi, that is given by

∇Fi(wk) = (I − α∇2fi(wk))∇fi(wk − α∇fi(wk)). (5)

At the server side (Line 6-12), let Ak be the set of UEs
participating in the global updating in round k, with the
carnality being |Ak| = A. Let τ ik be the interval between the
current round k and the last received global model version by
UE i. Such an interval reflects the staleness of local updates.
With this notion, we can write the gradient received by the
BS at round k from UE i as ∇F (wk−τ ik). Upon receiving A
local gradients, the server updates the global model parameter
as follows:

wk+1 = wk −
β

A

∑
i∈Ak

∇Fi(wk−τ ik), (6)

where β > 0 is the global step size. Then, the server distributes
the new global model wk+1 to either (a) the UEs in Ak or (b)
those with a staleness larger than the staleness threshold S.

Due to the vast volume of dataset, computing the exact
gradient for each UE is costly. Therefore, we use the stochastic
gradient descent (SGD) [26] as a proxy. Specifically, a generic
UE i samples a subset of data points to calculate an unbiased
estimate ∇̃fi(wk;Di) of ∇fi(wk), where Di represents a
portion of UE i’s local dataset with size |Di| = Di. Similarly,
the Hessian ∇2 in (5) can be replaced by its unbiased estimate
∇̃2fi(wk;Di). At this point, the actual gradient computed by
UE i is the stochastic gradient of local loss function ∇̃Fi(wk),
which is given by

∇̃Fi(wk) =
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(I − α∇̃2fi(wk;Dh
i ))∇̃fi(wk − α∇̃fi(wk;Din

i );Do
i ), (7)

where Din
i , Do

i and ;Dh
i are independently sampled datasets

with total size denoted by di = Din
i +Do

i +Dh
i . This stochastic

gradient is then uploaded to the central server for global model
update as follows:

wk+1 = wk −
β

A

∑
i∈Ak

∇̃Fi(wk−τ ik) (8)

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the last section, we introduce the basic learning process
of PerFedS2. This alone is not enough to quantify the benefits
a semi-synchronous training manner brings to implementation,
because the communication related parameters and the training
hyperparameters remain to be unclear. Therefore, our next
step is to formulate an optimization problem for PerFedS2,
with the wireless bandwidth allocation and the UE scheduling
policy to be determined. In this section, We introduce some
notations and concepts in Section III-A and III-B that are used
to formulate the optimization problem in Section III-C.

A. Communication Model

To implement PerFedS2 in mobile edge networks, the wire-
less communication environments should also be considered
to maximize the benefit a semi-asynchronous learning manner
brings to the learning algorithm. Note that in PerFedS2, one lo-
cal iteration of UE i may last for a few global communication
rounds, we focus on describing the wireless communication
processes of UE i within such a local iteration. The learning
time of UE i during one local iteration consists of two parts:
communication time and computation time. As for the commu-
nication time over mobile edge networks, we consider that UEs
access the BS through a channel partitioning scheme, such as
orthogonal frequency division multiple access (OFDMA) [27],
with total bandwidth B. Meanwhile, the bandwidth allocation
to UE i in round k is denoted as bik. The uplink rate of UE i
transmitting its local gradients to the BS can be computed as
follows [28, 29],

rik = bik ln(1 +
pih

i
k‖ci‖−κ

bikN0
), (9)

where pi is the transmit power of UE i, κ is the path
loss exponent, and N0 is the noise power spectral density.
hik‖ci‖−κ is the channel gain between UE i and the BS at
round k with ci being the distance between UE i and the BS
and hik being the small-scale channel coefficient. In this paper,
we assume that the small-scale channel coefficients across
communication rounds hik follow Rayleigh distribution [30].
With rik, the uplink transmission delay of UE i can be specified
as follows,

Tcomi
k =

Zik
rik
, (10)

where Zik denotes the number of bits UE i transmits in round
k. Meanwhile, Z denotes total size of the gradient UE i
transmits each time. Since the transmit power of the BS is
much higher than the UEs’, the downlink transmission latency

is much smaller than that in the uplink. Meanwhile, we care
more about the transmit power allocation on individual UEs
rather than that on the server, hence we ignore the downlink
delay for simplicity.

As for the computation time, let ci denote the number of
CPU cycles for UE i to execute one sample of data, ϑi denote
the CPU-cycle frequency of UE i, and di denote the number
of sampled data points on UE i, then the computation time of
UE i per local iteration can be expressed as follows [28],

Tcmpik =
cidi
ϑi

. (11)

As such, given that for semi-synchronous training, each local
iteration of UE i may last several global rounds, the total time
UE i spent in round k is given by

T ik =


Tcomi

k + Tcmpik,

when UE i starts a new local iteration in round k,

T comi
k, otherwise.

(12)

B. Illustrative Example

We give an example to facilitate the understanding of
PerFedS2. Consider the scenario depicted in Fig. 1, where
A = 2. This network has four UEs. In the first communi-
cation round, UE 3 and 4 are stragglers. Therefore, once the
stochastic gradients uploaded by UE 1 and 2 arrive at the
server in round 1, the server updates the global model from
w0 to w1, leaving the gradients computed by UE 3 and 4 to
be integrated into the global model in round 2 and round 3,
respectively.

Scheduling policy: Let πik ∈ {0, 1} be an indicator to denote
whether the gradient uploaded from UE i arrives at the server
in round k. That is, πik = 1 if the update from UE i is included
in the global model in round k, and πik = 0 otherwise. Then,
Π , [Π1,Π2, . . . ,ΠK ] denotes the scheduling decision
matrix up to round K, where Πk , [π1

k, π
2
k, . . . , π

n
k ]. For

the example given in Fig. 1, the computation has been carried
out five rounds and the scheduling decision matrix Π can be
written as

Π =


1 1 0 0
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1

 . (13)

From the above, we can see that the entries in each row of Π
satisfy the following relationship

n∑
i=1

πik = A. (14)

We further introduce a concept, coined as the relative
participation frequency, to reflect the statistical property of the
scheduling policy. Specifically, for UE i, we denote its relative
participation frequency as ηi, which represents the fraction of
time this UE participates in the global iteration. Such a notion
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Fig. 1: Example of the PerFedS2 mechanism when A = 2.

is formally defined as

ηi =

∑K
k=1 π

i
k∑K

k=1

∑n
i=1 π

i
k

=

∑K
k=1 π

i
k

AK
. (15)

Notably, the staleness bound S provides a lower bound of
ηi, that is, ηi ≥ S/K (∀i ∈ U).

C. Problem Formulation
PerFedS2 significantly increases the proportion of time

UEs spend on computing, as opposed to waiting. Meanwhile,
PerFedS2 also upper bounds the staleness caused by updates
from slow UEs. Let T be the overall training time over K
communication rounds. Then the objective of PerFedS2 is to
minimize the loss function as well as the overall training time.
Formally, the optimization problem of PerFedS2 is formulated
as follows 1,

min
b,Π,A,K

F (w) (P1)

s.t. min
b

K∑
k=1

max
i∈Ak
{T ik} = T, ∀i ∈ U , (C1.1)

n∑
i=1

bik ≤ B, k = 1, 2, . . . ,K, (C1.2)

1Besides bandwidth allocation and UE scheduling policy, other decision
variables such like transmit power can also be included in the problem
formulation. The logic keeps the same, but the parameters that need to be
considered might change. Problem (P1) shows the case when we consider the
bandwidth allocation and UE scheduling policy as variables, and it is free for
the researcher to extend this general formulation to other forms.

k−τ ik+S∑
j=k−τ ik

πij ≥ 1, ∀i ∈ U (C1.3)

k∑
j=k−τ ik

Zij ≤ Z (C1.4)

K ≥ S

ηi
, ∀i ∈ U , (C1.5)

where b , [b1,b2, . . . ,bK ] denotes the bandwidth allocation
matrix up to round K, and bk = [b1k, b

2
k, . . . , b

n
k ]. (C1.1) is the

overall training time constraint, that for each communication
round k, the round time is determined by the maximum of
T ik over i ∈ Ak, and the total time up to round K is equal
to T . (C1.2) is the bandwidth constraint, that the bandwidth
allocation to all UEs in every communication round shall
not exceed the available bandwidth B. (C1.3) stipulates the
staleness constraint on the updates, that the during any S
rounds of communication, UE i must be scheduled to update
the global model at least once. (C1.4) limits the number of bit
transmitted, note that Zik is determined by bik, and the number
of bits that are transmitted during τ ik rounds shall not be larger
than the size of model parameters. Finally, (C1.5) follows from
the lower bound we drawn in the previous subsection.

IV. CONVERGENCE ANALYSIS

In this section, we first introduce some definitions and as-
sumptions on the loss functions of PerFedS2 in Section IV-A.
Then we analyse its convergence rate in Section IV-B.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3210434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:35:35 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

A. Preliminaries

We consider the non-convex loss functions in this paper. Our
goal is to find an ε-approximate first-order stationary point
(FOSP) for PerFedS2 [13, 25]. The formal definition of FOSP
is given as follows.

Definition 1. A random vector wε ∈ Rm is called an ε-FOSP
for PerFedS2 if it satisfies E[‖∇F (wε)‖2] ≤ ε.

To make the convergence analysis consistent with that of
Per-FedAvg, we make the following assumptions [13].

Assumption 1 (Bounded Staleness). All delay variables τ ik’s
are bounded, i.e., maxk,i τ

i
k ≤ S.

Assumption 2. For each UE i ∈ U , its gradient ∇fi is L-
Lipschitz continuous and is bounded by a nonnegative constant
C, namely,

‖∇fi(w)−∇fi(u)‖ ≤ L‖w − u‖, w, u ∈ Rm (17)
‖∇fi(w)‖ ≤ C, w ∈ Rm. (18)

Assumption 3. For each UE i ∈ U , the Hessian of fi is
ρ-Lipschitz continuous:

‖∇2fi(w)−∇2fi(u)‖ ≤ ρ‖w − u‖, w, u ∈ Rm. (19)

Assumption 4. For any w ∈ Rm, ∇li(w;x, y) and
∇2li(w;x, y), computed w.r.t. a single data point (x, y) ∈
Xi × Yi, have bounded variance:

E(x,y)∼pi [‖∇li(w;x, y)−∇fi(w)‖2] ≤ σ2
G,

E(x,y)∼pi [‖∇
2li(w;x, y)−∇2fi(w)‖2] ≤ σ2

H . (20)

Assumption 5. For any w ∈ Rm, the gradient and Hessian
of local loss function fi(w) and the average loss function
f(w) = 1/n

∑n
i=1 fi(w) satisfy the following conditions:

1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2 ≤ γ2
G,

1

n

n∑
i=1

‖∇2fi(w)−∇2f(w)‖2 ≤ γ2
H . (21)

While Assumption 1 limits the maximum of the staleness,
Assumptions 2 to 5 characterize the properties of the gradient
and Hessian of fi(w), which are necessary to deduce the
following lemmas and convergence rate analysis.

B. Analysis of Convergence Bound

Before delving into the full details of convergence analysis,
we introduce three lemmas inherited from [13] to quantify
the smoothness of Fi(w) and F (w), the deviation between
∇Fi(w) and its estimate ∇̃Fi(w), and the deviation between
∇Fi(w) and ∇F (w), respectively.

Lemma 1. If Assumptions 2-4 hold, then Fi is smooth with
parameter LF := 4L + αρC. As a consequence, the aver-
age function F (w) = 1/n

∑n
i=1 Fi(w) is also smooth with

parameter LF .

Lemma 2. If Assumptions 2-4 hold, then for any αi ∈ (0, 1/L]
and w ∈ Rm, we have∥∥∥E [∇̃Fi(w)−∇Fi(w)

]∥∥∥ ≤ 2αLσG√
Din

, (22)

E
[
‖∇̃Fi(w)−∇Fi(w)‖2

]
≤ σ2

F . (23)

where σ2
F is defined as

σ2
F := 12

[
C2 + σ2

G

[
1

Do +
(αL)2

Din

]] [
1 + σ2

H

α2

4Dh

]
−12C2,

(24)
where Din = maxi∈U D

in
i , Do = maxi∈U D

o
i and Dh =

maxi∈U D
h
i .

Lemma 3. Given the loss function Fi(w) shown in (4) and
α ∈ (0, 1/L], if the conditions in Assumptions 2, 3, and 5 are
all satisfied, then for any w ∈ Rm, we have

1

n

n∑
i=1

‖∇Fi(w)−∇F (w)‖2 ≤ γ2
F , (25)

where γ2
F is defined as

γ2
F := 3C2α2γ2

H + 192γ2
G, (26)

where ∇F (w) = 1/n
∑n
i=1∇Fi(w).

Based on the three lemmas, we obtain the following theorem
to

Theorem 1. If Assumptions 1 to 5 hold and the steplength
LF in Lemma 1 satisfies

LFβ
2 − β + 2L2

Fβ
2S2 ≤ 1, (27)

then the following FOSP condition holds,

1

K

K−1∑
k=0

E[‖∇F (wk)‖2] ≤ 2(F (w0)− F (w∗))

βK

+ 4(LFβ + 2L2
Fβ

2S2)(σ2
F + γ2

F )
√
A. (28)

Proof: See the Appendix.

Corollary 1. Assume the conditions in Theorem 1 are satis-
fied. Then, if we set the number of total communication rounds
as K = O(ε−3), the global learning rate as β = O(ε2), the
staleness threshold as S = O(ε−1), and the number of UEs
that updates the global model as A = O(ε−2), Algorithm 1
finds an ε-FOSP for PerFedS2.

Proof: Note that 2(F (w0)−F (w∗)) is constant, then K =
O(ε−3) and β = O(ε2) ensure the first term of right-hand-side
of (28) to be equal to O(ε). Next we examine the second term
of (28). Note that (σ2

F + γ2
F ) is constant, then β = O(ε2) and

S = O(ε−1) together make (2LFβ + 4L2
Fβ

2S2) = O(ε2).
At this point, if A = O(ε−2), the second term of (28) is
equivalent to O(ε).

V. JOINT BANDWIDTH ALLOCATION AND UE
SCHEDULING

In this section, we present the steps to solve the optimization
problem P1. Particularly, we decouple P1 into P2, a bandwidth
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allocation problem, and P3, a UE scheduling problem. Note
that individually solving the two sub-problems is equivalent to
solving the original P1, which will be elaborated in the sequel.

A. Problem Decoupling

We begin with the bandwidth allocation problem. Given a
scheduling pattern Π, the bandwidth allocation problem can
be written as follows:

min
b

T (Π) (P2)

s.t.

K∑
k=1

max
i∈Ak
{T ik} ≤ T (Π) (C2.1)

n∑
i=1

bik ≤ B, k = 1, 2, . . . ,K (C2.2)

k∑
j=k−τ ik

Zij ≤ Z, ∀i ∈ U . (C2.3)

Then, with the optimal bandwidth allocation and the cor-
responding minimal overall training time T ∗(Π), the UE
scheduling problem can be written as follows,

min
K,A,Π

F (w) (P3)

s.t.

K∑
k=1

max
i∈Ak
{T ik} = T ∗(Π), ∀i ∈ U (C3.1)

k−τ ik+S∑
j=k−τ ik

πij ≥ 1, ∀i ∈ U (C3.2)

K ≥ S

ηi
, ∀i ∈ U . (C3.3)

B. Optimal Bandwidth Allocation

In order to solve P2, we introduce the following theorems
to explore the relationship between bik and T (Π) step by step.

Theorem 2. If the server updates the global model after
receiving A gradients from the UEs in each round, then the
optimal bandwidth allocation can be achieved if and only if
all the scheduled UEs have the same finishing time.

Proof: Recall the expression of rik defined in (9), we take
a derivative with respect to bik and arrive at the following

d
dbik

(
bik ln

(
1 +

pihi‖ci‖−κ

bikN0

))
= ln

(
1 +

pihi‖ci‖−κ

bikN0

)
− pihi‖ci‖−κ

bikN0 + pihi‖ci‖−κ
(31)

>

pihi‖ci‖−κ
bikN0

1 + pihi‖ci‖−κ
bikN0

− pihi‖ci‖−κ

bikN0 + pihi‖ci‖−κ

=0, (32)

where the inequality follows from the fact that ln(1 + x) >
x

1+x , for x > 0. Therefore, rik monotonically increases with bik.
While it is obvious that rik > 0, and thus Tcmpik +Tcomi

k =

Tcmpik +
Zik
rik

monotonically decreases with bik. Therefore, at
round k, if any UE i ∈ Ak has finished its whole local
model update process than the others, we can decrease its
bandwidth allocation to make it up for the other slower UEs
in Ak. As a result, the round latency which is determined
by the slowest UE in Ak can be reduced. Such a bandwidth
compensation is performed until all scheduled UEs in Ak
finish their local iterations at the same time. Consequently,
the optimal bandwidth allocation in round k is achieved when
all scheduled UEs in Ak have the same finishing time.

Theorem 3. Given the relative participation frequency ηi (i ∈
U), the UEs would be scheduled in an order with a recurrence
pattern. That is, the UEs would periodically participate into
the global model update.

Proof: Recall the formulation of ηi defined in (15), it
is obvious that ηi is computed by the number of times UE
i has been scheduled during all K rounds. Therefore, if ηi
is settled, then

∑K−1
k=0 πik is settled. As a result, if the UEs

are scheduled periodically, the times of each UE involved in
the global update can be settled, thus matching the relative
participation rate it has been assigned with.

Theorem 4. The optimal bandwidth allocation that achieves
the minimum learning time is given by the following

∑
i∈U

bik = B, k = 1, . . . ,K

bik >
BnηiZ

(T ∗i (Π)− Tcmpi)(W (−Γie−Γi) + Γi)
,∑

i∈Ak

bik ≤ B,

(33)

where Γi , N0Z
(T∗
i (Π)−Tcmpi)pihi‖ci‖−κ

, W (·) is Lambert-W
function, and T ∗i (Π) is the objective value of (P2).

Proof: From Theorem 3, we know that all UEs update
the global model periodically. Let Kp denote the number of
communication rounds in each period, then inferring from
Theorem 2, all UEs have the same finishing time in each period
without any waiting time. That is, we have

Kp∑
k=1

T ik =

Kp∑
k=1

T ik, ∀i, j ∈ U , i 6= j, (34)

Meanwhile, we have
Kp∑
k=1

Zik = ηiZAKP , ∀i ∈ U , (35)

where ZAKP denotes the number of bits that needs to be
transmitted during the Kp rounds. This equation indicates that
the number of bits transmitted by UE i during Kp rounds
is equal to the product of its relative participation frequency
ηi and the total number of bits transmitted during that Kp

communication rounds. From equation (35), it is easy to
indicate that

Kp∑
k=1

Zik
ηi

=

Kp∑
k=1

Zjk
ηj
, ∀i, j ∈ U , i 6= j. (36)
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Fig. 2: Bandwidth allocation example, where all UEs have the same parameters, and A = 2.

Now combing (34) and (36), we have∑Kp
k=1 Z

i
k

ηi
∑Kp
k=1 T

i
k

=

∑Kp
k=1 Z

j
k

ηj
∑Kp
k=1 T

j
k

, ∀i, j ∈ U , i 6= j. (37)

From equation (37) we observe that
∑Kp
k=1 Z

i
k∑Kp

k=1 T
i
k

denotes the

average rate of UE i during Kp rounds. That is, we have

E(rik)

ηi
=

E(rjk)

ηj
, ∀i, j ∈ U , i 6= j. (38)

The above equation states a fact that as long as the average
rate of each UE is weighted equalized, the optimal solution is
achieved. Therefore, there exists infinitely many solutions of
rik to the above equation. The simplest solution is ηi

rik
=

ηj

rjk
in each round k. Note that rik is determined by bik, and thus
there exits infinitely many solutions of bik in each round k.

Our next step is to compute the boundary values of bik. To
do this, we first divide UEs into two categories: UEs in Ak
and UEs do not in Ak.
• At one extreme case, only UEs in Ak are assigned with

bandwidth. That is,
∑
i∈Ak b

i
k = B. Under this case,

the PerFedS2 algorithm turns out to be a synchronous
PerFedAvg algorithm where in each round A UEs are
selected to update the global model. Meanwhile, the
bandwidth is allocated proportionally to the UEs in Ak
such that rik

ηi
=

rjk
ηj

, ∀i, j ∈ Ak, i 6= j. This extreme case
is corresponding to the third inequation of (33).

• At the other extreme case, all UEs in round k share the
available bandwith B at a rate rik

ηi
=

rjk
ηj

, ∀i, j ∈ Ak, i 6=
j. This case indicates the least bandwidth allocation to
UEs in Ak to ensure their orders to arrive the server
in the scheduling pattern. Under this case,

∑
i∈U b

i
k =

B. Therefore, a closed form of bik is obtained, which is
corresponding to the lower bound of bik shown in the
second inequation of (33).

To better illustrate these approaches, let us take the example
in Fig. 2. Assume A = 2 and the four UEs have the same ηi,

pi, hi, and ci. We can write the scheduling pattern Π of the
four UEs as follows: 

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
. . . . . . . . . . .

 . (39)

The length of the scheduling period is Kp = 2. Meanwhile,
according to Theorem 4, we have E(r1

k) = · · · = E(r4
k). One

extreme case of bandwidth allocation is UE 1 and UE 2 share
the total bandwidth B in the first round, each of which is
assigned B

2 . At the same time, UE 3 and UE 4 can complete
their local computation during round 1. Then, at round 2, all
bandwidth B is allocated to UE 3 and UE 4 for their gradients
transmission. In this case, according to Theorem 2, in each
round, both UEs will finish their gradient transmission at the
same time. That is, the duration of round 1 will be minimized
when UE 1 and UE 2 share the total bandwidth B equally.
At this point, the round duration is Z

r(B/2) , where r(B/2) =
B
2 ln(1 + 2pihi‖ci‖−κ

BN0
). Similarly, the duration of round 2 is

also Z
r(B/2) . Then, the total time of each period is 2Z

r(B/2) .
The other extreme case of bandwidth allocation is for all the
four UEs to share the bandwidth equally, then the UEs will
finish one time of global update at the same time, which is
computed by Z

r(B/4) . Note that we set A = 2, but in this
case if all UEs finish one communication round at the same
time then A = 4, therefore this extreme situation cannot be
achieved but can only be approached infinitely. It is obvious
Z

r(B/4) = 2Z
r(B/2) , this equation indicates that all bandwidth

allocation policies between the two extreme cases can lead to
the same minimized overall training time.

At this point, according to the features of the optimal
bandwidth solutions, we obtain four corollaries. Corollary 2
and 3 are two direct conclusions derived from Theorem 2,
which are shown as follows,

Corollary 2. From Theorem 2, we find that in each round k,
UEs in Ak will finish the communication round at the same
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time. That is, none of the UEs have to wait for the others
under the optimal bandwidth allocation policy. Therefore, we
have

∑K
k=1 maxi∈A{T ik} =

∑K
k=1 T

i∗
k = T ∗i (∀i ∈ U).

Corollary 3. The optimal overall training time is equivalent
to the optimal total training time of any UE i from a long-term
perspective when K → +∞. That is, T ∗(Π) = T ∗i (∀i ∈ U
and a large K).

Next, according to Theorem 4, we extract Corollary 4 to
characterize the optimal solutions of Zik, which is determined
right after the computation of bik.

Corollary 4. There exists infinitely many solutions of Zik as
long as the bandwidth allocation follows the results shown in
Theorem 4. Meanwhile, Zik is in a range of values from 0 to
Z.

At last, we introduce Corollary 5 to describe the relationship
between the relative participation frequency ηi and the optimal
overall training time T ∗(Π).

Corollary 5. There is a tradeoff between the relative partic-
ipation frequency ηi (i ∈ U) and the optimal overall training
time T ∗(Π). As long as η is defined or determined, then
according to Theorem 3 the circular scheduling pattern Π
can be determined. With the scheduling pattern Π, according
to Theorem 4, the optimal bandwidth allocation and the
corresponding optimal overall training time T ∗(Π) can be
determined.

C. Scheduling Policy

Based on the optimal bandwidth bik obtained from P2, we
turn to P3 to solve the UE scheduling problem. From (C3.2)
we have

ηiAK =

K∑
k=1

πik ≥
K

S
, ∀i ∈ U , (40)

which can be further simplified to A ≥ 1
ηiS

. Meanwhile,
note that the minimization of F (w) can be approximated
by minimizing the upper bound of 1

K

∑K−1
k=0 E[‖∇F (wk)‖2]

according to Theorem 1. Therefore, P3 can be approximated
by P4 as follows:

min
K,A,Π

2(F (w0)− F (w∗))

βK

+ 4(LFβ + 2L2
Fβ

2S2)(σ2
F + γ2

F )
√
A (P4)

s.t. T ∗i = T ∗(Π), ∀i ∈ U (C4.1)

A ≥ 1

ηiS
, ∀i ∈ U (C4.2)

K ≥ S

ηi
, ∀i ∈ U , (C4.3)

where (C4.1) is derived from Corollary 2 and 3.
The relationship between A and K has been coarsely

analysed in Corollary 1, where K = O(ε−3) and A = O(ε−2).
This means that the optimal K∗ and A∗ can only be estimated
in the implementation. Let the first term and the second term

Algorithm 2: Greedy PerFedS2 Scheduling Algorithm
Input: η = {η1, η2, . . . , ηn}, A∗

1 Initialize Π← ∅ ;
2 for k = 1 to K do
3 for i = 1 to N do
4 if the total number of global updates

sum(Π) = 0 then
5 η̂i = 0 ;
6 else
7 η̂i = number of overall updates of UE i

number of overall global updates =
sum(Π[:,i])
sum(Π) ;

8 end
9 if current number of updates in round k

sum(Π[k, :]) < A∗ and current relative
participation frequency of UE i η̂i ≤ ηi then

10 Set Π[k][i]← 1;
11 if current number of updates in round k

sum(Π[k, :]) < A∗ then
12 Schedule the first A∗ − sum(Π[k, :])

UEs in current round k;
13 i.e., Π[k][0 : A∗ − sum(Π[k, :])] = 1 ;
14 end
15 else
16 Π[k][i] = 0;
17 end
18 end
19 end

of the objective of P4 be equal to ε respectively, the optimal
solution of K and A can be approximated by

K∗ ≈ min
i∈U
{2(F (w0)− F (w∗))

βε
,
S

ηi
} (42)

A∗ ≈ min
i∈U
{ ε2

16(LFβ + 2L2
Fβ

2S2)2(σ2
F + γ2

F )2
,

1

ηiS
}. (43)

With the optimal value A∗, we use a greedy algorithm to
generate the scheduling policy matrix Π, which is shown in
Algorithm 2. In each round k, the algorithm is always picking
up the UE i with the smallest current relative participation
frequency η̂i, if η̂i < ηi then the algorithm sets πik = 1.
Then the algorithm picks up the second poorest UE j and set
πjk = 1. This process repeats until A∗ UEs are picked up in
round k. For the next round k + 1, the same process repeats.
In this way, the circular scheduling pattern can be achieved
and Π is obtained.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to (i)
verify the effectiveness of PerFedS2 in saving the overall
training time and (ii) examine the effects of different system
parameters on the performance of PerFedS2.

A. Setup

1) Datasets and Models: We consider an FL system that
contains multiple UEs located in a cell of radius R = 200
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TABLE I: System Parameters

Parameter Value
α (MNIST) 0.03
β (MNIST) 0.07

α (CIFAR-100) 0.02
β (CIFAR-100) 0.06
α (Shakespeare) 0.03
β (Shakespeare) 0.07

B 1 MHz
κ 3.8
N0 −174 dBm/Hz
pi 0.01 W

m and a BS located at the center. Meanwhile, the Rayleigh
distribution parameter of hik across communication rounds
is 40. We conduct the experiments using three datasets:
MNIST [31], CIFAR-100 [32] and the Shakespeare [33]
datasets. The network model we used for MNIST is a 2-
layer deep neural network (DNN) with hidden layer of size
100. The network model we used for CIFAR-100 is LeNet-
5 [34] that contains two convolutional layers and three fully
connected layers. And the network model we used for the
Shakespeare dataset is an LSTM classifier. The number of
UEs under the MNIST and the CIFAR-100 datasets is set to
be 20, and the number of UEs under the Shakespeare dataset
for next-character prediction is 188. The other parameters used
in the experiments are summarized in Table I.

2) Baselines: We compare PerFedS2 with three bench-
marks: synchronous, semi-synchronous, and asynchronous FL
algorithms. For the synchronous FL benchmark, we consider
three algorithms, FedAvg, FedProx [35], and Per-FedAvg
(termed as FedAvg-SYN, FedProx-SYN and PerFed-SYN
in the figures). FedProx is a FL algorithm that deals with
heterogenous datasets. For the semi-synchronous benchmark,
we consider only two algorithms besides PerFedS2, semi-
synchronous Federated Learning (FedAvgS2), which is a semi-
asynchronous FL algorithm, and semi-synchronous FedProx
(FedProxS2). For the asynchronous FL benchmark we consider
three algorithms, FedAvg-ASY, FedProx-ASY and PerFed-
ASY. The above three algorithms are asynchronous FL mech-
anisms, where the server performs the global updating as soon
as it receives a local model from any UE.

3) Dataset Participation: The level of divergence in the dis-
tribution of UEs’ datasets will affect the overall performance
of the system. To reflect this feature, each UE is allocated a
different local data size and has l = 1, 2, . . . , 10 of the 10
labels, where l denotes the level of data heterogeneity, the
higher l is, the more diverse the datasets are.

4) Relative Participation Frequency Setting: The relative
participation frequency plays a critical role in the system
performance as it determines not only the scheduling pattern
but also the minimal overall training time. In practice, there
are many factors that may affect the value of η. For example,
the distances from UEs to the server and the transmit power
of each UE. In this paper, we use two sets of η. For the
first one, we consider all the UEs have the same ηi, i.e.,

η1 = η2 = · · · = ηn. For the second one, we consider the
distances from the UEs to the server is uniformly distributed,
while the other parameters of the UEs are the same. Under
this setting, the values of ηi among the UEs are unbalanced.

B. Evaluation Results

1) Effect of relative participation frequency η: Fig. 3 shows
the convergence performance comparison between PerFedS2

and other five FL and PFL algorithms, where UEs have the
same ηi, and A = 5. Then Fig. 4 shows the convergence
performance comparison of the six algorithms, where the ηi
of each UE is determined by its distance to the server, and
the distance is uniformly distributed from 0 to 200 m. At last,
Fig. 5 shows the convergence comparison of the six algorithms
using Shakespeare dataset, where A = 50.

From both figures, we find that for MNIST, generally,
it takes synchronous algorithms the most time to achieve
the same convergence performance compared with semi-
synchronous and asynchronous algorithms, then asynchronous
algorithms behaves the best. However, for the CIFAR-100
dataset, generally, semi-synchronous algorithms behaves the
best. We attribute this confliction of behavior to the fact
that MNIST is a much simpler dataset than CIFAR-100.
Commonly, we use asynchronous algorithms to save waiting
time for faster UEs and hope that the convergence performance
will not be affected by the update staleness. This only works
when the dataset is simple and easy to train. Therefore, as we
can see in Fig. 3, for the MNIST dataset with a two-layer DNN
model, the asynchronous algorithms does behave the best,
semi-synchronous algorithms is the second, and synchronous
algorithms behave the worst. However, when it comes to
the CIFAR-100 dataset with the LeNet-5 model, which is a
much larger dataset with a much more complicated model,
it is hard for the asynchronous algorithms to convergence.
In this case, semi-synchronous algorithms behave the best.
This evaluation performance verifies our theoretical result that
a proper semi-synchronous algorithm not only mitigates the
straggler problem that happened in synchronous algorithms,
but also bounds the staleness caused by the stragglers, thereby
ensuring the convergence of the learning process. Meanwhile,
it is clear that PFL algorithms converge much faster than
FL algorithms. This result is derived from the fact the PFL
algorithms is designed to adapt and converge fast to new
datasets.

Most importantly, we find that compared with Fig. 3, the
convergence performance shown in Fig. 4 is poorer. This is
because the relative participation frequencies of UEs in Fig. 4
is not equalized. Since the UEs are uniformly distributed in
the cell, their distances to the central server are different. The
UEs with longer distances to the server have to transmit its
gradients for a longer time to reach the server. Therefore, these
UEs are naturally slower than the others, leading to smaller
η to participate in the global model updates. Given that the
datasets among UEs are heterogenous, the less participation
of long distance UEs will lead to inadequate training on
these UEs, making the global model convergence performance
poorer than the ones shown in Fig. 3.
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Fig. 3: Convergence performance comparison of PerFedS2, FedAvgS2, FedAvg-SYN, PerFed-SYN, FedAvg-ASY and PerFed-
ASY using MNIST and CIFAR-100 datasets. In this case, η1 = η2 = · · · = ηn. Meanwhile, as for the PerFedS2 and FedAvgS2

algorithms, we set A = 5.
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Fig. 4: Convergence performance comparison of PerFedS2, FedAvgS2, FedAvg-SYN, PerFed-SYN, FedAvg-ASY and PerFed-
ASY using MNIST and CIFAR-100 datasets. In this case, the distance from UEs to the server obeys the random distribution
from 0 to 200 m. Meanwhile, as for the PerFedS2 and FedAvgS2 algorithms, we set A = 5.
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Fig. 5: Convergence performance comparison of PerFedS2, FedAvgS2, FedAvg-SYN, PerFed-SYN, FedAvg-ASY and PerFed-
ASY using the Shakespeare dataset. For (a) and (b), η1 = η2 = · · · = ηn, and for (c) and (d), the distance from UEs to the
server obeys the random distribution from 0 to 200 m. Meanwhile, as for the PerFedS2 and FedAvgS2 algorithms, we set
A = 50.

As for the shakespeare dataset, we find that all the conclu-
sions about the comparisons between the 6 algorithms drawn
from the above two datasets still stand.

The comparison between FedAvgS2, FedProxS2 and
PerFedS2 using the MNIST and Shakespeare datasets is shown
in Fig. 6. From the figure it is obvious that PerFedS2 out-
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Fig. 6: Convergence performance comparison of PerFedS2, FedAvgS2 and FedProxS2. For (a), we use the MNIST dataset and
η1 = η2 = · · · = ηn. For (b), we use the MNIST dataset and the distance from UEs to the server obeys the random distribution
from 0 to 200 m. For (c), we use the Shakespeare dataset and η1 = η2 = · · · = ηn. And for (d), we use the Shakespeare
dataset and the distance from UEs to the server obeys the random distribution from 0 to 200 m. Meanwhile, we set A = 5 for
the MNIST dataset and A = 50 for the Shakespeare dataset.
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Fig. 7: Convergence performance of PerFedS2 with respect to the non-i.i.d level l of data sampled from the MNIST and
CIFAR-100 datasets. We compare the results when l = 2, 4, 6, 8 for data sampled from the MNIST dataset, and l = 3, 5, 7, 9
for data sampled from the CIFAR-100 dataset.

performs the other two algorithms. This is reasonable since
Per-FedAvg has already been verified in previous works to
provide a better convergence performance, and PerFedS2 is
designed based on Per-FedAvg. Therefore, PerFedS2 inherits
this benefit.

2) Effect of the non-i.i.d. level l: Fig. 7 shows the evaluation
results of PerFedS2 under different non-i.i.d. levels. It is
obvious that for both datasets, the higher the heterogenous
level is, the worse the convergence performances are. These
results are natural and in line with the laws of theory.

3) Effect of the number of participants in each round A:
Fig. 8 and Fig. 9 show the convergence performance of
PerFedS2 with respect to different number of participation UEs
A in each round, where Fig. 8 is under the case that all UEs
have the same ηi, whereas Fig. 9 is under the case that the ηi
of each UE is determined by its distance to the central server
that follows a random distribution.

As for the MNIST dataset, the result shown in Fig. 8
and Fig. 9 indicates a situation that the larger number of
participation UEs in each round, the poorer the convergence
performance is. This conclusion is not always true, given that
the relative participation frequency vector η = [ηi, η2, . . . , ηn]
in Fig. 9 is generated randomly according to the distances

from UEs to the central server, and thus the optimal A to
minimize the overall training time is random. We can only
conclude that in this very specific case of η, the larger number
of participation UEs in each round, the better. Nevertheless,
the benefits gained from a smaller value of A is slight in
Fig. 9. This is reasonable because, the randomly generated η
may result in a scheduling pattern that degrades the influences
caused by different number of participation UEs in each round.

However, as for the CIFAR-100 dataset, although Fig. 8c
and 8c still indicate the same conclusion as that in the MNIST
dataset, Fig. 9c and 9d indicate another situation where the
convergence performance of PerFedS2 wins when A = 10.
This result just verified the conclusion we mentioned above,
that the conclusion obtained from the MNIST dataset is not
always true. The result shown in Fig. 9c and 9d indicate a
specific case when A = 10 is approaching the optimal A∗.

4) Effect of the staleness threshold S: Finally, we evaluate
the effect of the staleness threshold S on the convergence
performance of PerFedS2, where the results are shown in
Fig. 10. Here, in order to make the effect of S more clear,
we use the simpler setting when all UEs have the same ηi,
and A = 5. Therefore, when S ≥ 5, all the scheduled UEs
would arrive the server within S rounds. Consequently, we
study change of the total training time when S = 1, 2, 3, 4, 5.
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Fig. 8: Convergence performance of PerFedS2 with respect to the number of UEs A that participate in the global model update
in each round using MNIST and CIFAR-100 datasets. In this case, η1 = η2 = · · · = ηn. Meanwhile, we compare the results
when A = 5, 10, 15.
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Fig. 9: Convergence performance of PerFedS2 with respect to the number of UEs A that participate in the global model update
in each round using MNIST and CIFAR-100 datasets. In this case, the distance from UEs to the server obeys the random
distribution from 0 to 200 m. Meanwhile, we compare the results A = 5, 10, 15.

Note that in the theoretical analysis, we have the constraint
that ηi ≥ S/K. This constraint eliminates the situations when
the staleness τ ik is larger than the staleness bound S, and thus
no updates would be dropped by the central server. However,
in practice, ηi is determined by a number of elements, for
example, the distances from UEs to the server or the transmit
power of individual UEs. Therefore, in practice, the constraint
ηi ≥ S/K cannot be always satisfied. When this happens to
UE i, in order to keep ηi constant, other UEs may have to
wait until the updates from UE i finally arrives the server,
thereby prolonging the overall training time. This conclusion
is verified through the results shown in Fig. 10, where the
larger S is, the better the convergence performance PerFedS2

has.

VII. CONCLUSIONS

We have proposed a new semi-synchronous PFL algorithm
over mobile edge networks, PerFedS2, that not only mitigates
the straggler problem caused by the synchronous training,
but also ensures a convergent training loss that may not be
guaranteed in the asynchronous training. This is achieved by
optimizing the joint bandwidth allocation and UE scheduling
problem. In order to solve such an optimization problem, we
first have analysed the convergence rate of PerFedS2, and

have proved that there exist a convergent upper bound on the
convergence rate. Then, based on the convergence analysis,
we have solved the optimization problem by decoupling it
into two sub-problems: the bandwidth allocation problem
and the UE scheduling problem. For a given scheduling
policy, the bandwidth allocations problem has been proved
to have infinitely many solutions. Meanwhile, based on the
convergence analysis of PerFedS2, the optimal UE scheduling
policy can be determined using a greedy algorithm. We have
conducted extensive experiments to verify the effectiveness of
PerFedS2 in saving training time, compared with synchronous
and asynchronous FL and PFL algorithms.

APPENDIX

Proof of Theorem 1
Using Lemma 1, we have

F (wk+1)− F (wk)

≤〈∇F (wk), wk+1 − wk〉+
LF
2
‖wk+1 − wk‖2

=−

〈
∇F (wk),

β

A

∑
i∈Ak

∇̃Fi(wk−τ ik)

〉
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Fig. 10: Convergence performance comparison of PerFedS2 with respect to the staleness threshold S using the MNIST and
CIFAR-100 datasets. In this case, η1 = η2 = · · · = ηn, A=5. Meanwhile, we compare the results S = 1, 2, 3, 4, 5.

+
LF
2

∥∥∥∥∥ βA ∑
i∈Ak

∇̃Fi(wk−τ ik)

∥∥∥∥∥
2

. (44)

From the above inequality, it is obvious that the key is to
bound the term

∑
i∈Ak ∇̃Fi(wk−τ ik). Let

1

A

∑
i∈Ak

∇̃Fi(wk−τ ik) = X + Y +
1

A

∑
i∈Ak

∇F (wk−τ ik), (45)

where

X =
1

A

∑
i∈Ak

(∇̃Fi(wk−τ ik)−∇Fi(wk−τ ik)),

Y =
1

A

∑
i∈Ak

(∇Fi(wk−τ ik)−∇F (wk−τ ik)). (46)

Our next step is to upper bound E[‖X‖2] and E[‖Y ‖2] respec-
tively. Recall the Cauchy-Schwarz inequality ‖

∑n
i=1 aibi‖2 ≤

(
∑n
i=1 ‖ai‖2)(

∑n
i=1 ‖bi‖2), as for X , consider the Cauchy-

Schwarz inequality with ai = 1√
A

(∇̃Fi(wk−τ ik) −
∇Fi(wk−τ ik)) and bi = 1√

A
, we have

‖X‖2 ≤ 1

A

(∑
i∈Ak

‖∇̃Fi(wk−τ ik)−∇Fi(wk−τ ik)‖2
)
. (47)

Let Fk denote the information up to round k. Given that the
set of scheduled UEs Ak is selected according to their relative
participation frequency ηi (i ∈ Ak), hence, by using Lemma 2
along with the tower rule, we have

E[‖X‖2] = E[E[‖X‖2|Fk]] ≤ σ2
F

∑
i∈Ak

ηi. (48)

Meanwhile, as for Y , consider the Cauchy-Schewarz inequal-
ity with ai = 1√

A
(∇Fi(wk−τ ik)−∇F (wk−τ ik)) and bi = 1√

A
,

we have

‖Y ‖2 ≤ 1

A

(∑
i∈Ak

‖∇Fi(wk−τ ik)−∇F (wk−τ ik)‖2
)
. (49)

In a similar way, the mean of ‖Y ‖2 is the weighted average
sum of E[‖Y ‖2|Fk], where the weight is the relative partic-
ipation frequency of UE i ∈ Ak. By using Lemma 3 along

with the tower rule, we have

E[‖Y ‖2] = E[E[‖Y ‖2]|Fk] ≤ γ2
F

∑
i∈Ak

ηi. (50)

Now getting back to the inequality (44), from the fact 〈a, b〉 =
1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2), we have

F (wk+1)− F (wk)

≤− β

2
‖∇F (wk)‖2 − β

2

∥∥∥∥∥ 1

A

∑
i∈Ak

∇̃Fi(wk−τ ik)

∥∥∥∥∥
2

+
β

2

∥∥∥∥∥∇F (wk)−X − Y − 1

A

∑
i∈Ak

∇F (wk−τ ik)

∥∥∥∥∥
2

+
LFβ

2

2

∥∥∥∥∥ 1

A

∑
i∈Ak

∇̃Fi(wk−τ ik)

∥∥∥∥∥
2

≤− β

2
‖∇F (wk)‖2 + LFβ

2 ‖X + Y ‖2︸ ︷︷ ︸
T1

+ β

∥∥∥∥∥∇F (wk)− 1

A

∑
i∈Ak

∇F (wk−τ ik)

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

+ (LFβ
2 − β)

∥∥∥∥∥ 1

A

∑
i∈Ak

∇F (wk−τ ik)

∥∥∥∥∥
2

. (51)

Our next step is to estimate the upper bounds of E[T1] and
E[T2], respectively. As for T1, we have

E[T1] ≤ 2E[‖X‖2] + 2E[‖Y ‖2] = 2(σ2
F + γ2

F ). (52)

As for T2, we have

T2 =
1

A2

∥∥∥∥∥∑
i∈Ak

(∇F (wk)−∇F (wk−τ ik))

∥∥∥∥∥
2

≤ 1

A

∑
i∈Ak

∥∥∥∇F (wk)−∇F (wk−τ ik)
∥∥∥2

≤ 1

A

∑
i∈Ak

∥∥∥LF (wk − wk−τ ik)
∥∥∥2
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≤max
i∈Ak

‖LF (wk − wk−τ ik)‖2

=L2
F ‖(wk − wk−τµk )‖2, (53)

where µ = arg maxi∈Ak ‖LF (wk − wk−τ ik)‖2, the first
inequality is obtained from the fact that ‖

∑n
i=1 ai‖2 ≤

n
∑n
i=1 ‖ai‖2, the second inequality is derived from

Lemma 1, and the third inequality comes from the fact that
1
n

∑n
i=1 ‖ai‖ ≤ maxi ‖ai‖. It follows that

T2 ≤L2
F ‖wk − wk−τµk ‖

2

=L2
F

∥∥∥∥∥∥
k−1∑

j=k−τµk

(wj+1 − wj)

∥∥∥∥∥∥
2

=L2
Fβ

2

∥∥∥∥∥∥
k−1∑

j=k−τµk

1

A

∑
i∈Aj

∇̃Fi(wj−τ ij )

∥∥∥∥∥∥
2

≤L2
Fβ

2S

k−1∑
j=k−S

∥∥∥∥∥∥ 1

A

∑
i∈Aj

∇̃Fi(wj−τ ij )

∥∥∥∥∥∥
2

≤2L2
Fβ

2S2‖X + Y ‖2

+ 2L2
Fβ

2S2

∥∥∥∥∥∥ 1

A

∑
i∈Aj

∇F (wj−τ ij )

∥∥∥∥∥∥
2

(54)

Taking expectation on both sides of (54), we have

E[T2] ≤4L2
Fβ

2S2(σ2
F + γ2

F )
∑
i∈Ak

ηi

+ 2L2
Fβ

2S2E

∥∥∥∥∥ 1

A

∑
i∈Ak

∇F (wk−τ ik)

∥∥∥∥∥
2
 . (55)

Note that
∑
i∈Ak ηi =

∑
i∈U π

i
kηi, we have

(
∑
i∈U

πikηi)
2 ≤

∑
i∈U

(πik)2
∑
i∈U

η2
i

=
∑
i∈U

πik
∑
i∈U

η2
i = A

∑
i∈U

η2
i ≤ A, (56)

where the first equation is derived from the fact that
(πik)2 = πik, the second equation is derived from the fact that∑
i∈U π

i
k = A, the last inequation is derived from the fact that

ηi < 1 and
∑
i∈U ηi = 1. As a result, we have∑

i∈Ak

ηi ≤
√
A. (57)

Now getting back to (51), we have

E[F (wk+1)]− E[F (wk)]

≤− β

2
E[‖∇F (wk)‖2]

+ (2LFβ
2 + 4L2

Fβ
3S2)(σ2

F + γ2
F )
√
A

+ (LFβ
2 − β + 2L2

Fβ
2S2)E


∥∥∥∥∥∥ 1

A

∑
i∈Aj

∇F (wj−τ ij )

∥∥∥∥∥∥
2


(58)

Summarizing the inequality from k = 0 to k = K − 1, we
have

E[F (wK)]− f(w0)

≤− β

2

K∑
k=1

E[‖∇F (wk)‖2]+

K(2LFβ
2 + 4L2

Fβ
3S2)(σ2

F + γ2
F )
√
A+

K∑
k=1

(LFβ
2 − β + 2L2

Fβ
2S2)E

∥∥∥∥∥ 1

A

∑
i∈Ak

∇F (wk−τ ik)

∥∥∥∥∥
2


≤− β

2

K−1∑
k=0

E[‖∇F (wk)‖2]

+K(2LFβ
2 + 4L2

Fβ
3S2)(σ2

F + γ2
F )
√
A, (59)

where the last inequality is due to (27). As a result, the desired
result is obtained.
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